
ARM Game
Asynchronous Real-time Multiplayer Game

by
Ravjot Singh and Glen Berseth

Introduction
1. Multiplayer games systems

a. Peer-to-Peer (Lockstep)

b. Client-Server

i. All players must start
with same initial state

ii. Lots of broadcasting

iii. Latency

iv. Cheating

i. Clients can join

ii. Less messaging

iii. Not fault tolerant

iv. No Cheating!

Motivation/Design Goals

1. Want fault-tolerant solution
a.Where players can join/leave whenever
b.Real-time
c.Tolerant to cheating
d.Scaleable

2. Would make an awesome MMO game

Problem Space

1. How to make a fault tolerant client-server?
a.Real-time

i. Each client simulates its own game
ii.Sends updates to server

b.Authoritative Server
i. Synchronizes state between clients

c.Distribute the server
i. Consistency Issues

d.Cheating

Model and Assumptions

1. Security model
a.Clients can’t collude
b.Clients can’t hack servers
c.Can send misinformation

2. Network
a. No partitioning
b. Unlimited Bandwidth
c.Asynchronous communication

3.Fate Sharing

ARM Game

Game Semantics:
- join()
- updateLocation(player,location)
- fire(player,location,direction)

Software each player is running?

 Client

- Game State is guided by
Player/AI

 Server

- Game State is guided in coordination
with other servers.

- Responsible for:
- validating locationUpdate()
- validating own termination due

to Fire

Player 1

Base Architecture Working

Activity Server

Server ServerClient Client

ServerClient

 1 2

 3

Publish Online
Players List

Key-Val Service

Poll Poll

Poll

Joining

Joining is done in two steps:
1.Registration
2.Game State Construction

Registration

Key-Val Service

Server Client

ServerClient

 1 2

 3

Activity Server

ServerClient

Server Client
 4

Reg Req

Reg Req

Resp

Resp

Registered Player

Game State Construction
Registered Player

Activity Server

Key-Val Service

Server ServerClient Client

Server Server ClientClient

 1 2

 3 4

State building
is based on
Move Semantic!

Registered Player

Server ServerClient Client

Server Server ClientClient

 1 2

 3 4

UpdateLoc
Req Broadcast Req

Move (x,y)

Broadcast Req

Server ServerClient Client

Server Server ClientClient

 1 2

 3 4

UpdateLoc
Req

Resp INVALID

Invalid Move (x,y)

Game State Construction
Wait (2 X t_halt)

Key-Val Service

Server ServerClient Client

ServerClient

 1 2

 3 Server
 4 Client

Wait (t_boot)

Registered Player

UpdateLoc

Server ServerClient Client

Server Server ClientClient

 1 2

 3 4

Fire Req
Fire Req

Fire (ownLoc, dirn, xpctedHit)

Broadcast Req

Key-Val Service

Server ServerClient Client

Server Server ClientClient

 1 2

 3 4

Fire Req
Fire Req

Broadcast Response

Resp

Fire (ownLoc, dirn, xpctedHit)

What we Achieved!
Scalable:

- no bottleneck (everybody responsible for themselve)
- optimistic approach - minimal msgs

Minimal Latency
- optimistic approach - minimum msgs

Fault tolerant
- Since each node is simulating its own game, system can tolerate n-1 faults in n node system

Consistency
- sacrificed consistency to gain scalability and reduced latency

Questions ?

Design Goals

Fault tolerant (??)
Minimal Latency
Lose Consistency
End-to-End Argument
Scalable

Model and Assumptions

1. Fate Sharing
a.If a client goes down, so does the server.

2.Synchronized Clocks
a.Not necessary
b.Vector clocks (for each client)

ARM Game

1.Agent locations
2.World bounds
3.maximum velocity
4.Shooting rate
5.Shooting distance
6.Shooting direction
7.Artificial Intelligence

	Slide 1
	Introduction
	Motivation/Design Goals
	Problem Space
	Model and Assumptions
	ARM Game
	Software each player is running?
	Base Architecture Working
	Joining
	Registration
	Game State Construction
	Move (x,y)
	Invalid Move (x,y)
	Game State Construction
	Fire (ownLoc, dirn, xpctedHit)
	Fire (ownLoc, dirn, xpctedHit)
	What we Achieved!
	Questions ?
	Design Goals
	Model and Assumptions
	ARM Game

